The function step_vpd_persistence_landscape() creates a specification of a recipe step that will convert a list-column of 3-column matrices of persistence data to a list-column of 1-row matrices of vectorizations.

step_vpd_persistence_landscape(
  recipe,
  ...,
  role = "predictor",
  trained = FALSE,
  hom_degree = 0L,
  xseq = NULL,
  xmin = NULL,
  xmax = NULL,
  xlen = NULL,
  xby = NULL,
  num_levels = 6L,
  generalized = FALSE,
  weight_func_pl = "triangle",
  bandwidth = NULL,
  columns = NULL,
  keep_original_cols = TRUE,
  skip = FALSE,
  id = rand_id("vpd_persistence_landscape")
)

Arguments

recipe

A recipe object. The step will be added to the sequence of operations for this recipe.

...

One or more selector functions to choose variables for this step. See selections() for more details.

role

For model terms created by this step, what analysis role should they be assigned? By default, the new columns created by this step from the original variables will be used as predictors in a model.

trained

A logical to indicate if the quantities for preprocessing have been estimated.

hom_degree

The homological degree of the features to be transformed.

xseq

A discretization grid, as an increasing numeric vector. xseq overrides the other x* parameters with a warning.

xmin, xmax, xlen, xby

Limits and resolution of a discretization grid; specify only one of xlen and xby.

num_levels

The number of levels of a persistence landscape to vectorize. If num_levels is greater than the length of a landscape, then additional levels of zeros will be included.

generalized

Logical indicator to compute generalized functions.

weight_func_pl

A single character for the type of kernel function used to compute generalized landscapes.

bandwidth

The bandwidth of a kernel function.

columns

A character string of the selected variable names. This field is a placeholder and will be populated once prep() is used.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip

A logical. Should the step be skipped when the recipe is baked by bake()? While all operations are baked when prep() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.

id

A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Details

Persistent homology is usually encoded as birth–death pairs (barcodes or diagrams), but the space of persistence data sets does not satisfy convenient statistical properties. Such applications as hypothesis testing and machine learning benefit from transformations of persistence data, often to Hilbert spaces (vector spaces with inner products and induced metrics).

Engine

The persistence landscape vectorization deploys TDAvec::computePersistenceLandscape(). See there for definitions and references.

Tuning Parameters

This step has 4 tuning parameters:

  • hom_degree: Homological degree (type: integer, default: 0L)

  • num_levels: # Levels or envelopes (type: integer, default: 6L)

  • weight_func_pl: Kernel distance weight function (type: character, default: "triangle")

  • bandwidth: Kernel bandwidth (type: double, default: NULL)

Examples

library(recipes)

# inspect vectorized features
volc_dat <- data.frame(image = I(list(volcano / 10)))
recipe(~ image, data = volc_dat) %>% 
  step_pd_raster(image, method = "link_join") %>% 
  step_vpd_persistence_landscape(image_pd, hom_degree = 1, num_levels = 3) %>% 
  print() -> volc_rec
#> 
#> ── Recipe ──────────────────────────────────────────────────────────────────────
#> 
#> ── Inputs 
#> Number of variables by role
#> predictor: 1
#> 
#> ── Operations 
#>  persistent features from a cubical filtration of: image
#>  persistence landscape of: image_pd
print(volc_rec)
#> 
#> ── Recipe ──────────────────────────────────────────────────────────────────────
#> 
#> ── Inputs 
#> Number of variables by role
#> predictor: 1
#> 
#> ── Operations 
#>  persistent features from a cubical filtration of: image
#>  persistence landscape of: image_pd
volc_rec %>% 
  prep(training = volc_dat) %>% 
  bake(new_data = volc_dat)
#> # A tibble: 1 × 302
#>   image           image_pd image_pd_pl_1_1 image_pd_pl_1_2 image_pd_pl_1_3
#>   <list>          <list>             <dbl>           <dbl>           <dbl>
#> 1 <dbl [87 × 61]> <PHom>                 0               0               0
#> # ℹ 297 more variables: image_pd_pl_1_4 <dbl>, image_pd_pl_1_5 <dbl>,
#> #   image_pd_pl_1_6 <dbl>, image_pd_pl_1_7 <dbl>, image_pd_pl_1_8 <dbl>,
#> #   image_pd_pl_1_9 <dbl>, image_pd_pl_1_10 <dbl>, image_pd_pl_1_11 <dbl>,
#> #   image_pd_pl_1_12 <dbl>, image_pd_pl_1_13 <dbl>, image_pd_pl_1_14 <dbl>,
#> #   image_pd_pl_1_15 <dbl>, image_pd_pl_1_16 <dbl>, image_pd_pl_1_17 <dbl>,
#> #   image_pd_pl_1_18 <dbl>, image_pd_pl_1_19 <dbl>, image_pd_pl_1_20 <dbl>,
#> #   image_pd_pl_1_21 <dbl>, image_pd_pl_1_22 <dbl>, image_pd_pl_1_23 <dbl>, …

# dimension-reduce using vectorized features
data(permeability_qsar, package = "modeldata")
permeability_qsar %>% 
  transform(perm_cut = cut(permeability, breaks = seq(0, 60, 10))) %>% 
  subset(select = -permeability) %>% 
  tidyr::nest(chem_fp = -perm_cut) %>% 
  print() -> perm_dat
#> # A tibble: 6 × 2
#>   perm_cut chem_fp               
#>   <fct>    <list>                
#> 1 (10,20]  <tibble [20 × 1,107]> 
#> 2 (0,10]   <tibble [110 × 1,107]>
#> 3 (20,30]  <tibble [7 × 1,107]>  
#> 4 (30,40]  <tibble [8 × 1,107]>  
#> 5 (40,50]  <tibble [16 × 1,107]> 
#> 6 (50,60]  <tibble [4 × 1,107]>  
recipe(perm_cut ~ chem_fp, data = perm_dat) %>% 
  step_pd_point_cloud(chem_fp, max_hom_degree = 2) %>% 
  step_vpd_persistence_landscape(chem_fp_pd, hom_degree = 1, num_levels = 3) %>% 
  step_pca(starts_with("chem_fp_pd_"), num_comp = 2) %>%
  print() -> perm_rec
#> 
#> ── Recipe ──────────────────────────────────────────────────────────────────────
#> 
#> ── Inputs 
#> Number of variables by role
#> outcome:   1
#> predictor: 1
#> 
#> ── Operations 
#>  persistent features from a Rips filtration of: chem_fp
#>  persistence landscape of: chem_fp_pd
#>  PCA extraction with: starts_with("chem_fp_pd_")
perm_est <- prep(perm_rec, training = perm_dat)
perm_res <- bake(perm_est, new_data = perm_dat)
# inspect results
tidy(perm_rec)
#> # A tibble: 3 × 6
#>   number operation type                      trained skip  id                   
#>    <int> <chr>     <chr>                     <lgl>   <lgl> <chr>                
#> 1      1 step      pd_point_cloud            FALSE   FALSE pd_point_cloud_oDqZE 
#> 2      2 step      vpd_persistence_landscape FALSE   FALSE vpd_persistence_land…
#> 3      3 step      pca                       FALSE   FALSE pca_272kp            
tidy(perm_rec, number = 2)
#> # A tibble: 1 × 3
#>   terms      value id                             
#>   <chr>      <dbl> <chr>                          
#> 1 chem_fp_pd    NA vpd_persistence_landscape_lIhdo
tidy(perm_est, number = 2)
#> # A tibble: 1 × 3
#>   terms      value id                             
#>   <chr>      <dbl> <chr>                          
#> 1 chem_fp_pd    NA vpd_persistence_landscape_lIhdo
# visualize results
with(perm_res, {
  plot(PC1, PC2, type = "n", asp = 1)
  text(PC1, PC2, labels = perm_cut)
})