Skip to contents

The function step_vpd_euler_characteristic_curve() creates a specification of a recipe step that will convert a list-column of 3-column matrices of persistence data to a list-column of 1-row matrices of vectorizations.

Usage

step_vpd_euler_characteristic_curve(
  recipe,
  ...,
  role = "predictor",
  trained = FALSE,
  xseq = NULL,
  xmin = NULL,
  xmax = NULL,
  xlen = NULL,
  xby = NULL,
  max_hom_degree = Inf,
  evaluate = "intervals",
  columns = NULL,
  keep_original_cols = TRUE,
  skip = FALSE,
  id = rand_id("vpd_euler_characteristic_curve")
)

Arguments

recipe

A recipe object. The step will be added to the sequence of operations for this recipe.

...

One or more selector functions to choose variables for this step. See selections() for more details.

role

For model terms created by this step, what analysis role should they be assigned? By default, the new columns created by this step from the original variables will be used as predictors in a model.

trained

A logical to indicate if the quantities for preprocessing have been estimated.

xseq

A discretization grid, as an increasing numeric vector. xseq overrides the other x* parameters with a warning.

xmin, xmax, xlen, xby

Limits and resolution of a discretization grid; specify only one of xlen and xby.

max_hom_degree

The highest degree, starting from 0, of the features to be transformed.

evaluate

The method by which to vectorize continuous functions over a grid, either 'intervals' or 'points'. Some functions only admit one method.

columns

A character string of the selected variable names. This field is a placeholder and will be populated once prep() is used.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip

A logical. Should the step be skipped when the recipe is baked by bake()? While all operations are baked when prep() is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when using skip = TRUE as it may affect the computations for subsequent operations.

id

A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of any existing operations.

Details

Persistent homology is usually encoded as birth–death pairs (barcodes or diagrams), but the space of persistence data sets does not satisfy convenient statistical properties. Such applications as hypothesis testing and machine learning benefit from transformations of persistence data, often to Hilbert spaces (vector spaces with inner products and induced metrics).

Engine

The Euler characteristic curve vectorization deploys TDAvec::computeEulerCharacteristic(). See there for definitions and references.

Tuning Parameters

This step has 1 tuning parameter:

  • max_hom_degree: Highest homological degree (type: integer, default: Inf)

Examples

library(recipes)

# inspect vectorized features
volc_dat <- data.frame(image = I(list(volcano / 10)))
recipe(~ image, data = volc_dat) %>% 
  step_pd_raster(image, method = "link_join") %>% 
  step_vpd_euler_characteristic_curve(image, max_hom_degree = 2) %>% 
  print() -> volc_rec
#> 
#> ── Recipe ──────────────────────────────────────────────────────────────────────
#> 
#> ── Inputs 
#> Number of variables by role
#> predictor: 1
#> 
#> ── Operations 
#>  persistent features from a cubical filtration of: image
#>  Euler characteristic curve of: image
print(volc_rec)
#> 
#> ── Recipe ──────────────────────────────────────────────────────────────────────
#> 
#> ── Inputs 
#> Number of variables by role
#> predictor: 1
#> 
#> ── Operations 
#>  persistent features from a cubical filtration of: image
#>  Euler characteristic curve of: image
volc_rec %>% 
  prep(training = volc_dat) %>% 
  bake(new_data = volc_dat)
#> # A tibble: 1 × 100
#>   image  image_ec_1 image_ec_2 image_ec_3 image_ec_4 image_ec_5 image_ec_6
#>   <list>      <dbl>      <dbl>      <dbl>      <dbl>      <dbl>      <dbl>
#> 1 <PHom>          0          0          0          0          0          0
#> # ℹ 93 more variables: image_ec_7 <dbl>, image_ec_8 <dbl>, image_ec_9 <dbl>,
#> #   image_ec_10 <dbl>, image_ec_11 <dbl>, image_ec_12 <dbl>, image_ec_13 <dbl>,
#> #   image_ec_14 <dbl>, image_ec_15 <dbl>, image_ec_16 <dbl>, image_ec_17 <dbl>,
#> #   image_ec_18 <dbl>, image_ec_19 <dbl>, image_ec_20 <dbl>, image_ec_21 <dbl>,
#> #   image_ec_22 <dbl>, image_ec_23 <dbl>, image_ec_24 <dbl>, image_ec_25 <dbl>,
#> #   image_ec_26 <dbl>, image_ec_27 <dbl>, image_ec_28 <dbl>, image_ec_29 <dbl>,
#> #   image_ec_30 <dbl>, image_ec_31 <dbl>, image_ec_32 <dbl>, …

# dimension-reduce using vectorized features
data(permeability_qsar, package = "modeldata")
permeability_qsar %>% 
  transform(perm_cut = cut(permeability, breaks = seq(0, 60, 10))) %>% 
  subset(select = -permeability) %>% 
  tidyr::nest(chem_fp = -perm_cut) %>% 
  print() -> perm_dat
#> # A tibble: 6 × 2
#>   perm_cut chem_fp               
#>   <fct>    <list>                
#> 1 (10,20]  <tibble [20 × 1,107]> 
#> 2 (0,10]   <tibble [110 × 1,107]>
#> 3 (20,30]  <tibble [7 × 1,107]>  
#> 4 (30,40]  <tibble [8 × 1,107]>  
#> 5 (40,50]  <tibble [16 × 1,107]> 
#> 6 (50,60]  <tibble [4 × 1,107]>  
recipe(perm_cut ~ chem_fp, data = perm_dat) %>% 
  step_pd_point_cloud(chem_fp, max_hom_degree = 2) %>% 
  step_vpd_euler_characteristic_curve(chem_fp, max_hom_degree = 2) %>% 
  step_pca(starts_with("chem_fp_"), num_comp = 2) %>%
  print() -> perm_rec
#> 
#> ── Recipe ──────────────────────────────────────────────────────────────────────
#> 
#> ── Inputs 
#> Number of variables by role
#> outcome:   1
#> predictor: 1
#> 
#> ── Operations 
#>  persistent features from a Rips filtration of: chem_fp
#>  Euler characteristic curve of: chem_fp
#>  PCA extraction with: starts_with("chem_fp_")
perm_est <- prep(perm_rec, training = perm_dat)
perm_res <- bake(perm_est, new_data = perm_dat)
# inspect results
tidy(perm_rec)
#> # A tibble: 3 × 6
#>   number operation type                           trained skip  id              
#>    <int> <chr>     <chr>                          <lgl>   <lgl> <chr>           
#> 1      1 step      pd_point_cloud                 FALSE   FALSE pd_point_cloud_…
#> 2      2 step      vpd_euler_characteristic_curve FALSE   FALSE vpd_euler_chara…
#> 3      3 step      pca                            FALSE   FALSE pca_a0FWR       
tidy(perm_rec, number = 2)
#> # A tibble: 1 × 3
#>   terms   value id                                  
#>   <chr>   <dbl> <chr>                               
#> 1 chem_fp    NA vpd_euler_characteristic_curve_rUlDf
tidy(perm_est, number = 2)
#> # A tibble: 1 × 3
#>   terms   value id                                  
#>   <chr>   <dbl> <chr>                               
#> 1 chem_fp    NA vpd_euler_characteristic_curve_rUlDf
# visualize results
with(perm_res, {
  plot(PC1, PC2, type = "n", asp = 1)
  text(PC1, PC2, labels = perm_cut)
})